461 research outputs found

    New Perturbed Proximal Point Algorithms for Set-valued Quasi Variational Inclusions

    Get PDF
    In this paper, by using some new and innovative techniques, some perturbed iterative algorithms for solving generalized set-valued variational inclusions are suggested and analyzed. Since the generalized set-valued variational inclusions include many variational inclusions , variational inequalities and set-valued operator equation studied by others in recent years, the results obtained in this paper continue to hold for them and represent a significant refinement and improvement of the previously known results in this area

    On Euclidean, Hermitian and symplectic quasi-cyclic complementary dual codes

    Full text link
    Linear complementary dual codes (LCD) intersect trivially with their dual. In this paper, we develop a new characterization for LCD codes, which allows us to judge the complementary duality of linear codes from the codeword level. Further, we determine the sufficient and necessary conditions for one-generator quasi-cyclic codes to be LCD codes involving Euclidean, Hermitian, and symplectic inner products. Finally, we constructed many Euclidean, Hermitian and symmetric LCD codes with excellent parameters, some improving the results in the literature. Remarkably, we construct a symplectic LCD [28,6]2[28,6]_2 code with symplectic distance 1010, which corresponds to an trace Hermitian additive complementary dual (14,3,10)4(14,3,10)_4 code that outperforms the optimal quaternary Hermitian LCD [14,3,9]4[14,3,9]_4 code

    Improved Extreme Learning Machine and Its Application in Image Quality Assessment

    Get PDF
    Extreme learning machine (ELM) is a new class of single-hidden layer feedforward neural network (SLFN), which is simple in theory and fast in implementation. Zong et al. propose a weighted extreme learning machine for learning data with imbalanced class distribution, which maintains the advantages from original ELM. However, the current reported ELM and its improved version are only based on the empirical risk minimization principle, which may suffer from overfitting. To solve the overfitting troubles, in this paper, we incorporate the structural risk minimization principle into the (weighted) ELM, and propose a modified (weighted) extreme learning machine (M-ELM and M-WELM). Experimental results show that our proposed M-WELM outperforms the current reported extreme learning machine algorithm in image quality assessment

    Symplectic self-orthogonal quasi-cyclic codes

    Full text link
    In this paper, we obtain sufficient and necessary conditions for quasi-cyclic codes with index even to be symplectic self-orthogonal. Then, we propose a method for constructing symplectic self-orthogonal quasi-cyclic codes, which allows arbitrary polynomials that coprime xn1x^{n}-1 to construct symplectic self-orthogonal codes. Moreover, by decomposing the space of quasi-cyclic codes, we provide lower and upper bounds on the minimum symplectic distances of a class of 1-generator quasi-cyclic codes and their symplectic dual codes. Finally, we construct many binary symplectic self-orthogonal codes with excellent parameters, corresponding to 117 record-breaking quantum codes, improving Grassl's table (Bounds on the Minimum Distance of Quantum Codes. http://www.codetables.de)

    Some quaternary additive codes outperform linear counterparts

    Full text link
    The additive codes may have better parameters than linear codes. However, it is still a challenging problem to efficiently construct additive codes that outperform linear codes, especially those with greater distances than linear codes of the same lengths and dimensions. This paper focuses on constructing additive codes that outperform linear codes based on quasi-cyclic codes and combinatorial methods. Firstly, we propose a lower bound on the symplectic distance of 1-generator quasi-cyclic codes of index even. Secondly, we get many binary quasi-cyclic codes with large symplectic distances utilizing computer-supported combination and search methods, all of which correspond to good quaternary additive codes. Notably, some additive codes have greater distances than best-known quaternary linear codes in Grassl's code table (bounds on the minimum distance of quaternary linear codes http://www.codetables.de) for the same lengths and dimensions. Moreover, employing a combinatorial approach, we partially determine the parameters of optimal quaternary additive 3.5-dimensional codes with lengths from 2828 to 254254. Finally, as an extension, we also construct some good additive complementary dual codes with larger distances than the best-known quaternary linear complementary dual codes in the literature
    corecore